Transient Thermo-fluid Model of Meniscus Behavior and Slag Consumption in Steel Continuous Casting
نویسنده
چکیده
The behavior of the slag layer between the oscillating mold wall, the slag rim, the slag/liquid steel interface, and the solidifying steel shell, is of immense importance for the surface quality of continuous-cast steel. A computational model of the meniscus region has been developed, that includes transient heat transfer, multi-phase fluid flow, solidification of the slag, and movement of the mold during an oscillation cycle. First, the model is applied to a lab experiment done with a ‘‘mold simulator’’ to verify the transient temperature-field predictions. Next, the model is verified by matching with available literature and plant measurements of slag consumption. A reasonable agreement has been observed for both temperature and flow-field. The predictions show that transient temperature behavior depends on the location of the thermocouple during the oscillation relative to the meniscus. During an oscillation cycle, heat transfer variations in a laboratory frame of reference are more severe than experienced by the moving mold thermocouples, and the local heat transfer rate is increased greatly when steel overflows the meniscus. Finally, the model is applied to conduct a parametric study on the effect of casting speed, stroke, frequency, and modification ratio on slag consumption. Slag consumption per unit area increases with increase of stroke and modification ratio, and decreases with increase of casting speed while the relation with frequency is not straightforward. The match between model predictions and literature trends suggests that this methodology can be used for further investigations.
منابع مشابه
Transient Fluid-Flow Phenomena in the Continuous Steel-Slab Casting Mold and Defect Formation
Phenomena associated with the turbulent flow of molten steel in a continuous casting mold are responsible for many defects in the final product, including surface slivers, frozen meniscus hooks, captured inclusions that enter the mold from upstream, and mold slag entrapment. Animations of some of these transient flow phenomena are presented from Large-Eddy Simulations of a typical slab caster w...
متن کاملModeling of Continuous-Casting Defects Related to Mold Fluid Flow
The quality of continuous-cast steel is greatly influenced by fluid flow in the mold, particularly at the meniscus. Recent examples of computational model applications at the University of Illinois are presented to investigate the formation of several different types of defects related to flow phenomena. The amount of gas injection into the tundish nozzle to avoid air aspiration is quantified b...
متن کاملTransport and Entrapment of Particles in Continuous Casting of Steel
The entrapment of inclusions, bubbles, slag, and other particles into solidified steel products is a critically-important quality concern. During continuous casting, particles may enter the mold with the steel flowing through the submerged nozzle. In addition, mold slag may be entrained from the top surface. A computational model has been developed to simulate the transport and entrapment of pa...
متن کاملInterfacial Friction-Related Phenomena in Continuous Casting with Mold Slags
Many phenomena in continuous casting including the formation of surface defects are greatly affected by heat transfer in the mold. The interfacial slag layers between the solidifying steel shell and the mold wall dominates the resistance to heat removal and thus controls mold heat transfer. Surface defects, such as longitudinal cracks and star cracks have been associated with variation of slag ...
متن کاملSimulation of transient fluid flow in mold region during steel continuous casting
A system of models has been developed to study transient flow during continuous casting and applied to simulate an event of multiple stopper-rod movements. It includes four sub-models to incorporate different aspects in this transient event. A three-dimensional (3-D) porous-flow model of the nozzle wall calculates the rate argon gas flow into the liquid steel, and the initial mean bubble size i...
متن کامل